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Outline

• Nature of time series data
• Capturing temporal dependencies: GTM through 
time 

• Case study: condition monitoring of helicopter 
airframes
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Nature of Time Series Data

• Measurements are taken repeatedly from a single 
system.

• In most data, there are dependencies between one 
time step and the next.

• Many different types of behaviour: stationary/non-
stationary, seasonality, trends, regimes.  
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Capturing Dependencies

• Simplest way to capture dependencies is through 
signal processing – features that model dynamics.
• Autoregressive model parameters
• Fourier Transforms
• Wavelets

• Then apply visualisation in the feature space.
• Alternative is to build dynamics into the 
visualisation model.
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SONAR Data
● Sensor array consisted of 32 hydrophones configured in an 

approximately linear array with a target ship transmitting a signal 
whilst traversing the length of the array. 

● Shallow water scenario with low levels of rain and thermal noise 
expected. 

● Frequency response of the hydrophones was 124 – 249Hz.
● The sensor array across all beams can be considered either as a 

set of one-dimensional time series or groups of vector time series 
processes.

● Overlapping groups of 5 beams via a shifting window, i.e. for the 
32 beams analysed there are 28 groups.
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Visual Analytics of SONAR 
•
• Signal is target tonals plus noise 

● Fit a non-linear autoregressive model (RBF) with mixture of noise 
processes and use KL-divergence for dissimilarity:

●  Residual signal characteristics: Laplace distribution,
● Thermal noise characteristics: Rayleigh distribution,
● Surface wave scatter: K distribution (two-gamma compound),
● Rain characteristics: Gamma distribution,
● Miscellaneous characteristics: Normal distribution.
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Beam Grouping 
● Visualisation shows the relative similarity of the groups of beams where 

each point in the plot corresponds to one of the beam groups. 
● Cluster of beams containing only noise and a separate group of ‘outlier’ 

beams which contain target signal elements.
● Shading of beams is white to black ordered from group 1 (beams 1-5) 

to 28 (beams 28-32) respectively. Targets are present in beams 1-6 and 
21-25, which appear as anomalies.
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GTM through Time

• Original GTM assumes that all data points are 
independently generated.

•
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GTM through Time
• The GTMTT consists of a hidden Markov model in which the hidden 

states are given by the latent points of the GTM model, and the emission 
probabilities are governed by the GTM mixture distribution.

• A topologically-constrained HMM, as GTM is a topologically-constrained 
GMM.

• The parameters of the GTM model, as well as the transition probabilities 
between states, are tied to common values across all time steps.
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GTMTT practicalities
• If we allow a fully connected matrix of independent transition 

probabilities connecting every state at time n to every state at time 
n + 1, then the number of independent parameters would be 
prohibitively large. 

• If we have, for example, 100 hidden states in the GTM model then 
we would have 104 independent transition probability parameters to 
be determined.

• In many applications we expect different regions of the latent space 
to correspond to different regimes. We also expect smooth 
changes in latent space within a regime and relatively rare jumps to 
other regimes. An approximate way to capture this prior knowledge 
is to allow groups of transitions to be governed by a common 
parameter.  More recently, Bayesian methods with a GP prior have 
been used.

• Both GTM and HMMs are trained using an EM algorithm, so (with 
some work) there is an EM algorithm for GTMTT.
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(Simple) Helicopter Example
• 9 variables (sampled every two seconds) measuring quantities such 

as acceleration, rate of change of heading, speed, altitude and 
engine torque.

• GTM with a 15x15 grid in latent space. For each latent state i, the 
transition probabilities to states at the next time step are collected 
into 10 separate groups, in which 9 of the groups correspond to 
those states j which are within 1 unit from state i, while the 10th 
group consists of all other states j. 

• In the trained model, different regions of the latent space will 
correspond to different flight regimes. 
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GTMTT: Helicopter
• Plots of posterior distribution in latent space at 4 
time points.

•
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Shuttle Example (Vellido)
• 6-variate time series consists of 1000 data points obtained from 

various inertial sensors from Space Shuttle mission STS-571. 
• Contains sub-sequences of little variability followed by sudden 

transition periods. 
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GTMTT Latent Space
• 10x10 latent space. 
• Latent states representing low-variability periods are circled, and 

sudden transition intervals are represented by discontinuous 
oriented lines. 

• The state transitions of period B are represented by a continuous 
oriented line. 
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Measuring transitions
•
•
• Suddenness of transitions is proportional to RIV

n
 (based on sub-

sequences X
n
.  Lower bound of zero.

• Interval B is represented by a sequence of small fluctuations in RIV
n
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Physiological Data
• 3-variate time series consisting of 3400 samples of physiological 

data, used in the Santa Fe Competition in 1991. They consist of 
three physiological variables measured in a subject while sleeping, 
and contain clearly atypical sub-sequences due to a measurement 
error (failure in a sensor).

•
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Regime Changes

• Atypical 
sequences 
removed

• Trends taken 
out with signal 
processing.

•
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GTMTT Latent Space
• Variational GTMTT. 
• Square size proportional to time spent in state.
• Peaks of distortion correspond to transitions.
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Case Study: Agusta Westland
• AW has pioneered CVM, the continuous recording of airframe 

vibration (0-200Hz), to improve the investigation of unusual 
occurrences and monitor airframe integrity.

• Develop a probabilistic framework for inferring flight mode and 
key parameters from multiple streams of vibration data. 

• Improve indicators of airframe condition: the wavelet transform 
and kernel entropy to assess the dynamics (i.e. non-stationary 
characteristics) of the vibration signal.

• Integrated diagnosis based on probabilistic models of 
normality and using a belief network to model prior knowledge 
about the domain and interactions between key variables.  

•

19



Understanding the Data

• 8 sensors measuring 
vibration

• 108 frequency bands 
(STFFT) for each 
sensor

• Too much data to 
build a model from.
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Feature Selection
• Features are selected using GTM with Feature Saliencies.
• Sensors are selected by comparing inter-class separation in 

different plots.
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Flying through the Visualisation
• Flight went through a number of different states.
• The sequence can be recaptured from the visualisation
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Novelty Detection
•
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Outlier detection using Extreme
Value Theory
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Conclusions

● Exploration of Animation, Small Multiples, and 
Drawing Stability

● Guidelines on their use

● In future work, other definitions for the mental 
map? 
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