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Semi-Supervised Models

● In a supervised task we know the outcome for each 
example (e.g. a class or continuous value) and we 
try to develop a model that can predict that 
outcome. Classification or regression

● In an unsupervised task we have data, but no 
variable represents a single outcome for each 
example and we try to develop a model that looks 
for groups in the data.  Clustering or visualisation

● In some unsupervised tasks we want a target 
variable to influence the output: semi-supervised or 
relative supervision.
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Supervised Task: Classification
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Learn a method for predicting the instance class from pre-labeled 
(classified)  instances



Unsupervised Models

● Find natural grouping of instances given unlabelled 
data
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Metric learning
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● Many statistical methods  rely on distances as much or more than 
they do on feature values:
● nearest neighbor regression/classification uses distances to find 

the nearest neighbors
● many clustering approaches such as k-means use distances as 

part of the algorithm to optimize the clustering
● in information retrieval, “best” results are often the ones most 

similar to the query according to some distance
● Dimensionality reduction methods such as multidimensional 

scaling, Sammon mapping, Self-organizing maps, Stochastic 
Neigbor Embedding, Neighbor Retrieval Visualizer, and others are 
distance-based

● In many cases distances from a new distance function can be just 
plugged in to dimensionality reduction methods. (In some cases 
more is needed.)



Topographic Mappings

● Basic aim is that distances in the visualisation 
space are as close a possible to those in original 
data space.

● Given a dissimilarity matrix      we want to map data 
points x_i to points y_i in a feature space such that 
their dissimilarities    are as close as possible to  

● The map is said to preserve similarities.  The stress 
measure is used as objective function.
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Multi-dimensional Scaling

● Given distances or dissimilarities between every pair of 
observations try to preserve these as far as possible in lower-
dimensional space.

● In classical scaling, the distance between the objects is 
assumed to be Euclidean. A linear projection then corresponds 
to PCA.

● The Sammon mapping is a non-linear multidimensional 
scaling technique more general (and more widely used) than 
classical scaling.

● Neuroscale is a neural network based scaling technique that 
has the advantage of actually giving a map that generalises!
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Neuroscale
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Subjective metrics
● Modify the stress measure:
●           .
●

●

● Inter-point distances for pairs of points in different classes are 
modified by the addition of some constant term k, such that 
their separation should be exaggerated in the resultant map.

●

●

●

● Other formulations are possible – can use a dissimilarity 
matrix for classes or distance for an auxiliary continuous 
variable.  The relative weight of objective and subjective 
elements can be controlled by a parameter.
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Neuroscale Operation



Model Comparison
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Synthetic Example
● 50 data points were distributed uniformly at random over each 

of two adjacent surfaces.
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Neuroscale

Neuroscale: 
alpha = 0.5



Synthetic Example 2

● Three concentric spheres.
●
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RAE 1992 Dataset

● Departments in UK universities rated by an assessment panel 
on research every 6 years. 150 variables and a ranking (1-5): 
number and value of grants, number of publications, …

● Accumulated variables measured over multiple years.
● Interest in predicting outcome from numeric variables only.
● Combined data from chemistry, physics, biology panels (217 

instances).  Applied Maths used as an independent test set 
(67 examples).

● Aim is to extract features to improve accuracy of ranking 
prediction.  Used neural network classification models.
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Visualisations
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Visualisations: Neuroscale
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Subjective Visualisations
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Feature Extraction
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Visualisation and Uncertainty

● Real data is noisy.
● We are forced to deal with uncertainty, yet we need to be 

quantitative.
● The optimal formalism for inference in the presence of 

uncertainty is probability theory.
● We assume the presence of an underlying regularity to make 

predictions.
● Bayesian inference allows us to reason probabilistically about 

the model as well as the data.

Doubt is not a pleasant condition, but certainty is absurd.
                                                                                       Voltaire
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Generative Topographic Mapping

● Mapping from latent space to data space
● A thick rubber sheet studded with tennis balls. GTM defines 

p(y|x;W); use Bayes’ theorem to compute p(x|y*;W) for a given 
point y* in data space.
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Enhancements to GTM

● Curvatures and magnification factors give more information 
about shape of manifold.

● Hierarchy allows the user to drill down into data; either user-
defined or automated (MML) selection of sub-model positions.

● Temporal dependencies in data handled by GTM through 
Time.

● Discrete data handled by Latent Trait Model (LTM): all the 
other goodies work for it as well.

● Can cope with missing data in training and visualisation.
● MML methods for feature selection.
● Structured covariance.
● Uncertainty measures.
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Incomplete Data

● The training algorithm for the Generative Topographic 
Mapping (GTM) can be modied to use class information to 
improve results on incomplete data. 

● The approach is based on an EM method which estimates the 
parameters of the mixture components and missing values at 
the same time.

● Furthermore, if we know the class membership of each 
pattern, we can improve the generic algorithm by eliminating 
multi-modalities in the posterior distribution over the latent 
space centres. 

● The algorithm can help to construct informative visualisation 
plots, even when many of the training points are incomplete.
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Algorithm

● EM algorithm involves expectation (E-step): extend this to 
missing values as well as missing kernel. 

●

●

● GTM model uses spherical covariance, hence this inference is 
quite uninformative

●

●

● Class membership (if available) can provide more accurate 
inference. 

●
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Synthetic Data Results
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GTM with complete data GTM-EM with missing data

GTM with missing data and MI
Accuracy as function of 
missing percentage



Oilflow Dataset

● 12 measured variables and 3 states: homogeneous, annular 
and laminar. 

● In the training set, 50% of the data points in each class are 
incomplete, with between 6 and 9 values removed.

● Plot (b) shows better separation of classes and matches better 
to the result obtained from the complete data set (plot (a)).

● After using class-conditional MI, some strongly overlapped 
clusters appear in plot (c) since the same means are 
substituted for missing values of the same class. 

● As for plot (d), which was obtained just by the generic 
algorithm, the homogeneous and annular classes are not 
separated well as we did not use the class-conditional prior 
knowledge in the training process.
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Visualisations: GTM
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(a) Complete data
(b) Missing data: 
class-conditional EM
(c) Missing data: EM 
conditional MI
(d) Missing data: 
generic EM

Homogeneous, annular and 
laminar are represented by 
square, star and
circle signs
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