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Outline

• Supervised methods (regression and classification) 
and supervised dimensionality reduction

• Methods for text data
• Methods for dynamic data
• HCI for dimensionality reduction
• Data lab: bring your own data to be analyzed with 
help from the presenters 
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Supervised dimensionality reduction

• Supervised dimensionality reduction has two main purposes: 
support further automated prediction/classification/regression tools, 
or support human analysis

• For automated tools, dimensionality reduction (supervised or not) 
leaves out information. Why use it?

• Dimensionality reduction could focus on relevant variables, leave 
out noise/outliers/distortions, and further methods may be 
faster/more robust with smaller dimensionality.

● For human analysis, the motivation is to discover novelties in 
data,  using existing outputs/categories/annotations/expert 
knowledge as supervision.

● If we already have annotations, what remains to be discovered? 
Relationships of features to annotations, relationships between 
annotations, features that are not captured by existing annotation.
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Supervised dimensionality reduction

• Two main approaches to supervised dimensionality reduction:
1. Directly propose a dimensionality reduction criterion that 

makes use of annotation. Example: linear discriminant 
analysis.

2. Use a dimensionality reduction method that relies on some 
essential statistics of data, and learn these statistics in a 
supervised way using the annotation.
Typical example: distance-based dimensionality reduction 
can be done using a supervised metric learned from 
annotation.

• A danger in both approaches: if only few data with annotation are 
available, conclusions (annotation-feature relationships, etc.) can 
be based on artifacts of individual samples. 
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Methods that directly optimize 
supervised criteria
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Linear discriminant analysis 1

• PCA is an unsupervised method (class information is not usually 
used).

● Linear Discriminant Analysis (LDA) is a supervised method for 
dimensionality reduction in classication problems.

● As PCA, LDA can be accomplished with standard matrix algebra 
(eigenvalue decompositions etc.). This makes it relatively simple 
and useful.

● PCA is a good general purpose dimensionality reduction method, 
LDA is a good alternative if we want to optimize the separability of 
classes in a specific classication task, and are happy with a 
dimensionality of less than the number of classes (k < K). 
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Linear discriminant analysis 2

● Originally introduced for two-class problems, idea: transform the 
data so that the classes (c1, c2) are separated as much as possible

● Within-class scatter matrix

where                               and mi is the number of samples in ci 
● Between-class scatter matrix

● Optimize projection matrix      to maximize 
ratio of between-class to within-class scatter: 

    
● Optimized matrix     given by eigenvectors of
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Linear discriminant analysis 3

● Multi-class case is similar:

● Within-class scatter matrix

where                               and mi is the number of samples in ci 
● Between-class scatter matrix

● Optimize projection matrix      to maximize 
ratio of between-class to within-class scatter: 

    
● Optimized matrix     given by solving

the generalized eigenvalue problem
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Linear discriminant analysis 4

● The rank of the within-class scatter matrix is upper-bounded by m-
n, and the rank of the between-class scatter matrix is upper 
bounded by n-1. ---> LDA cannot give more projection directions 
than n-1 (number of classes - 1).

● Classification in the low-dimensional space can be done e.g. by 
finding the nearest class centroid of a new point

● LDA projection maximizes mean-squared distance between 
classes in the projected space, not the same as minimizing 
classification error. Pairs of classes that are far apart dominate the 
LDA criterion, and can leave overlap between the remaining 
classes.
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Linear discriminant analysis 5

● OptDigits 
example:
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Input neighborhood Output neighborhood

Cost function:

Minimize with respect to output coordinates y
i

Supervised Neighbor Retrieval Visualizer by feature 
constraint
Neighbor Retrieval Visualizer: nonlinear dimensionality reduction method, optimizes information 
retrieval performance of original data neighbors from the display. Minimizes misses and false 
neighbors, the user can set the desired tradeoff. Stochastic neighbor embedding is one end of the 
tradeoff. (J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval perspective to 
nonlinear dimensionality reduction for data visualization. J. Machine Learning Research, 2010.)

Severity of missed neighbors, 
minimizing it maximizes a 
generalization of recall

Severity of false neighbors, 
minimizing it maximizes a 
generalization of precision



Input neighborhood Output neighborhood

Cost function:

Minimize with respect to output coordinates y
i

Supervised Neighbor Retrieval Visualizer by feature 
constraint
Neighbor Retrieval Visualizer: nonlinear dimensionality reduction method, optimizes information 
retrieval performance of original data neighbors from the display. Minimizes misses and false 
neighbors, the user can set the desired tradeoff. Stochastic neighbor embedding is one end of the 
tradeoff. (J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval perspective to 
nonlinear dimensionality reduction for data visualization. J. Machine Learning Research, 2010.)

Severity of missed neighbors, 
minimizing it maximizes a 
generalization of recall

Severity of false neighbors, 
minimizing it maximizes a 
generalization of precision

The optimization can be done with a mapping constraint, such as 
linear mapping y = wTx. (J. Peltonen. Visualization by Linear Projections as Information 

Retrieval. In proc. WSOM 2009.) Allows supervision: neighborhoods from 
supervised annotation, constraint from unsupervised inputs.



Ontology distance:
Given ontology annotations of
two genes, compute Jaccard
distance between their 
true paths (paths from 
annotations to ontology root)

one of the 19 GO true paths for human gene AIFM1

Bioinformatics case study: you have measurements and 
annotations. Then...

Expression distance: any suitable distance between measured 
activity, e.g. simply euclidean distance between gene expression 
profiles as vectors, or any more advanced distance (e.g. time series 
distance messures if the profiles are over time).

          (Peltonen, Aidos, Gehlenborg, Brazma, and Kaski. An information retrieval perspective on 
visualization of gene expression data with ontological annotation. In proc. ICASSP 2010)

Supervised Neighbor Retrieval Visualizer by feature 
constraint



Example: Yeast genes significantly expressed  in a study of 300 
comparisons of mutant yeast strains to wild-type (normal) strain

To visualize regularities in annotation, give the Jaccard 
distances as input to NeRV ---> visualizes which genes are 
neighbors in terms of annotation.

Supervised Neighbor Retrieval Visualizer by feature 
constraint



To visualize regularities in gene expression, give the 
distances of gene expression profiles as input to NeRV ---> 
visualizes which genes are neighbors in terms of gene expression.

300 comparisons of strains  
---> 300 dim. gene expression 
profile for each gene.

Visualize similarities of 
expression. Color by ontology 
similarity.

Supervised Neighbor Retrieval Visualizer by feature 
constraint



To visualize correspondences of gene expression similarity and 
ontology similarity, give the distances of gene expression profiles as 
inputs to linear NeRV, and give ontology distances as targets ---> 

Finds a subspace of 
expression profiles, 

so that neighbors in the 
subspace best match 
neighbors in the ontology.

Supervised Neighbor Retrieval Visualizer by feature 
constraint



Methods that perform 
dimensionality reduction in 
supervised metrics
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Metric learning
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● Metric learning means learning a better metric (better distance 
function) between the original high-dimensional data than the 
original metric that one starts with 

● “Better” can mean many things, for example better separation 
between classes of data, better correspondence to some known 
properties, etc.

● Metric learning is not dimensionality reduction by itself, but can be 
used as part of dimensionality reduction.



Metric learning – easy to apply
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● Many statistical methods  rely on distances as much or more than 
they do on feature values:
● nearest neighbor regression/classification uses distances to find 

the nearest neighbors
● many clustering approaches such as k-means use distances as 

part of the algorithm to optimize the clustering
● in information retrieval, “best” results are often the ones most 

similar to the query according to some distance
● Dimensionality reduction methods such as multidimensional 

scaling, Sammon mapping, Self-organizing maps, Stochastic 
Neigbor Embedding, Neighbor Retrieval Visualizer, and others are 
distance-based

● In many cases distances from a new distance function can be just 
plugged in to dimensionality reduction methods. (In some cases 
more is needed.)



Types of metrics
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● Metrics can be simple or complicated functions of data features.
 

● The Euclidean metric is a simple squared sum of coordinate 
differences.

● Norm-independent distance is related to cosine similarity:



Types of metrics
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● A Mahalanobis metric is described by a positive semidefinite metric 
matrix A:

● If A is diagonal the metric is just feature weighting:

● The traditional Mahalanobis metric uses A=C-1 where C is the 
covariance matrix of the data. This metric appears inside the 
exponential term of a multidimensional Gaussian density function:

● We call the metric with any A a Mahalanobis metric.



Types of metrics
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● Adjusting a Mahalanobis metric can make it easier to, for example, 
distinguish between classes of data: assume d(x,w) = (x-w)T A (x-w)

● A non-diagonal Mahalanobis metric can take into account not
just feature importances, but importance of feature combinations

A A

Pictures from slides by Kerstin Bunte



Types of metrics
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● Nonlinear metrics can be described in several ways:
Globally through an explicit transformation: For example any 
nonlinear transformation y = f(x), followed by an Euclidean or 
Mahalanobis metric between the transformed features.
● Thus learning any transformation f for the data (followed by a 

traditional metric) can be seen as learning a metric for the data:

● The output of the transformation can be higher-dimensional or 
lower-dimensional than the original features

● In particular, learning any dimensionality reduction (feature 
selection/feature extraction) can be seen as learning a metric 
where the left-out features have no effect on distance.



Types of metrics
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● Nonlinear metrics can be described in several ways:
Globally through an implicit transformation: Sometimes the 
transformation does not need to be known, as long as the metric 
between the transformed features is known.
● Kernel methods like kernel PCA use kernel functions to 

compute inner products in a transformed space. 
● Valid kernel functions (so-called “Mercer kernels”) always  

correspond to inner products in some transformed space, even if 
the transformation is unknown/hard to compute.

● Distances can be computed using kernels only: assume f is the 
unknown nonlinear function and                   is the known kernel 
function. Then the distance can be computed as        



Types of metrics
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● Nonlinear metrics can be described in several ways:
Alternatively, a metric can be described locally:
● In each very small (infinitesimally small) neighborhood N(x) of the 

feature space around point x, distances inside the neighborhood 
are described by a Mahalanobis metric with a metric matrix A(x). 

● Distances between two far-apart points x1, x2 are given by 
integrals of local distances: for any path from x1 to x2, the distance 
along the path is the integral over local distances along the path.

The shortest path (minimal integral) defines the distance d(x1, x2).

Shortest path may be difficult to compute analytically, but can be 
approximated.



Supervision for metrics
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● Class labels: some subset of training data points has a known 
class label, out of a set of NC different classes. For example data 
points might be pictures of people, for some pictures the identity of 
the person is known.

● Must-link / cannot-link constraints: for some pairs of training 
data points, it is known that they should be similar or dissimilar.

For example video footage might contain several pictures of the 
same person, and the pictures can be considered “similar” even if 
the person's identity is unknown. 
Or: in social data sets data points might be people, and some 
people are known to be “similar” (friends/colleagues, etc.)

● Some methods instead use constraint triplets as annotation:



Supervision for metrics
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● If we have a dimensionality reduction/visualization method that 
works based on distances (or based on a distance function), we 
can often simply give the optimized distances as input.

● For example the “Sammon's Mapping in the Learning Metric” 
method (Sammon-L; Jaakko Peltonen, Arto Klami, and Samuel 
Kaski, “Improved Learning of Riemannian Metrics for Exploratory 
Data Analysis”) infers the supervised Learning Metric, computes 
pairwise distances in it, and gives them as input to a traditional 
Sammon's mapping algorithm.

● One could similarly give supervised distances like the Learning 
Metric as input to Multidimensional scaling, or Curvilinear 
Component Analysis.



Metric learning = dim. reduction?
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● In general: if the Mahalanobis metric matrix A has an 
eigendecomposition A = VDVT, where D is diagonal, then 

where D1/2 is D with square roots taken from diagonal entries.

● Thus learning Mahalanobis metric corresponds to learning a linear 
data transformation!

● If some eigenvalues (diagonals of D) are zero, then the metric 
effectively performs dimensionality reduction

● Some methods learn a metric with penalties that encourage 
features to be left out.



Informative discriminant analysis
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Method first proposed in Samuel Kaski and Jaakko Peltonen, 
”Informative discriminant analysis”, in proceedings of ICML 2003. 
Soon after proposed in Jacob Goldberger, Sam Roweis, Geoffrey 
Hinton, Ruslan Salakhutdinov, “Neighbourhood components 
analysis”, proceedings of NIPS 2004.
Idea: assume training data have labels. Learn a Mahalanobis metric 
matrix A. Maximize log-likelihood of predicting labels of a point from 
its nearby neighbors in the metric. (This method is thus a maximum-
likelihood method to estimate the metric.)
Suppose the density of each class can be written as a mixture of 
multivariate Gaussian distributions with class-dependent weights:



Informative discriminant analysis
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The conditional probability of classes at location x is

And the log-likelihood of observed class-labels ci of points xi is

                                      which can be maximized with respect toA



Informative discriminant analysis
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IDA/NCA can also be used for dimensionality reduction by restricting 
the rank of the metric matrix A, or by directly optimizing A as a 
product of a linear projection matrix W, A=WWT. The probabilities 
and cost function are computed the same as before. The matrix W 
can be used to project data to lower dimensionality.

Pictures from J. 
Goldberger, S. Roweis, G. 
Hinton, R. Salakhutdinov, 

proc. NIPS 2004.



Interactive vis. by metric learning
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● A metric tells which points are similar (they have small distance in 
the metric) and which points are dissimilar (they have large 
distance). The desired metric is unknown - we want to learn it.

● If we have examples of similar point pairs and examples of 
dissimilar point pairs, can we learn a metric from them?

● Yes! Use probabilistic modeling: given a metric, define a 
probability that two points in the metric will be labeled similar 
vs. dissimilar. Then optimize the metric to maximize the likelihood 
of the observed pairs!

● For example, use a Mahalanobis metric (matrix A = WWT) and a 
logistic probability:

● Then maximize the log-likelihood of observed similarities with 
respect to elements of W, e.g. by gradient descent:

Some pictures from Hoi, Liu, Lyu, and Ma,  in proceedings of CVPR 2006.

psimilar(x i , x j)=
1

1+exp((xi−x j)
T A (x i−x j)−threshold)

maxW [∑(xi , x j)∈Ssimilar
log psimilar(xi , x j)+∑(xi , x j)∈S dissimilar

log(1−psimilar (xi ,x j))]

“points closer than 
threshold are probably 
called similar”



Interactive vis. by metric learning
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● This idea was used for interactive visualization (Peltonen et al.)
● Experts inspected a scatterplot of scientific documents and pointed 

out pairs of documents that were similar or dissimilar. 
● A metric was learned for document features (=unigram content)

based on the pointed-out pairs 
● A visualization was created

in the new metric by the
Neighbor Retrieval Visualizer

● The metric and visualization 
converged to focus on 
important features of data.

● Resulting data organization 
corresponded to a hidden
ground-truth classification 
of documents

Pictures from Peltonen et al., Information Retrieval 
Perspective to Interactive Data Visualization, in 
Eurovis 2013. 



Local supervised ”Learning metric”
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● Learns a local metric from class labels of data.
● Suppose we know conditional probabilities of classes at different 

points of the feature space. 
● Idea: Locally, distances should increase the most in directions 

where the class probabilities (class distribution) changes the most. 
If we have good local distances, we can derive a full metric from 
them.

● Difference between two class probability distributions can be 
measured by Kullback-Leibler divergence

● It turns out Kullback-Leibler divergence between conditional class 
distributions at nearby points (x, x+dx) can be expressed as a 
squared Mahalanobis distance!



Local supervised ”Learning metric”
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● As mentioned before, local Mahalanobis distances can be 
extended to global distances between two points as minimal 
integrals of the local distances (minimal integral over possible 
paths between the points)

● Simple approach: just compute the local Mahalanobis from x to 
x+dx, regardless how large the difference dx is.

● More advanced approach: compute an approximate integral over 
the line connecting x to x+dx (e.g.divide line into 10 segments, 
compute local Mahalanobis over each segment).

● Even more advanced approach (similar to Isomap): compute initial 
distance matrix as above, then compute minimal path using other 
data points as possible waypoints. Can be done by Dijkstra's 
algorithm / Floyd's algorithm.



Local supervised ”Learning metric”

36

● Example of local Mahalanobis metrics

2 classes,
grayscale background:
probability of class 1.

lines: direction where 
local Mahalanobis 
distance increases

distance increases only
in directions where
class probability changes!

● The learning metric can be computed between any points (either 
training data or any other points; class labels not required). Thus it 
can be applied to any method that works based on distances.



Sammon mapping, sup. metric
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Traditional Sammon's mapping on a data set of images of different 
letters A-Z, using various geometrical descriptors about the letter 
shapes as the features, with the Euclidean metric (“Sammon-E”). 

From:
Jaakko Peltonen, 
Arto Klami, and 
Samuel Kaski. 
Improved 
Learning of 
Riemannian 
Metrics for 
Exploratory Data 
Analysis. Neural 
Networks, vol. 
17, pages 1087-
1100, 2004.



Sammon mapping, sup. metric
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Traditional Sammon's mapping on a data set of images of different 
letters A-Z, using various geometrical descriptors about the letter 
shapes as the features, with the local supervised Learning Metric 
(“Sammon-L”). 

From:
Jaakko Peltonen, 
Arto Klami, and 
Samuel Kaski. 
Improved 
Learning of 
Riemannian 
Metrics for 
Exploratory Data 
Analysis. Neural 
Networks, vol. 
17, pages 1087-
1100, 2004.



SOM in a supervised metric
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Idea: at each iteration of Self-Organizing Map training, find the 
nearest prototype for a data point using distances in the learning 
metric, instead of the simple Euclidean metric. The rest of the Self-
Organizing Map training (the way propotypes are adapted towards 
data) is the same as before.

Learning metric Euclidean metric
Self-Organizing Map 
trained for letter 
images (features = 
geometric 
descriptions of the 
letters), with classes 
A-Z shown on the 
map.

The Learning Metric 
leads to better class 
organization

From:
Samuel Kaski, Janne Sinkkonen, and 
Jaakko Peltonen. Bankruptcy analysis 
with self-organizing maps in learning 
metrics. IEEE Transactions on Neural 
Networks, 12:936-947, 2001.



SOM in a supervised metric
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Idea: at each iteration of Self-Organizing Map training, find the 
nearest prototype for a data point using distances in the learning 
metric, instead of the simple Euclidean metric. The rest of the Self-
Organizing Map training (the way propotypes are adapted towards 
data) is the same as before.

Probability of bankruptcy Example of a feature over the SOM

Self-Organizing 
Map trained for 
company data 
(features = 
financial indicators) 
in the learning 
metric. Classes = 
whether the 
company went 
bankrupt.



 

Neighbor Retrieval Visualizer 
in a locally supervised metric
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Reference: Peltonen et al., ICASSP 2009



 

Neighbor Retrieval Visualizer 
in a locally supervised metric
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Neighbor Retrieval Visualizer 
in a supervised metric
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